スキップしてメイン コンテンツに移動

アンプのノイズに関しての対策。

ノイズ対策用コンデンサの選定は、容量ではなくインピーダンスの周波数特性で選定する。
・静電容量とESLが小さいと共振周波数が高くなり、高周波領域でのインピーダンスが低い。
・静電容量が大きいほど容量性領域のインピーダンスは低い。
・ESRが小さいほど共振周波数におけるインピーダンスが低い。
・ESLが小さいほど誘導性領域におけるインピーダンスが低い。
コンデンサによるノイズ対策に行う場合には、コンデンサの特性をよく理解することが大切です。この図は、コンデンサのインピーダンスと周波数の関係を示したもので、コンデンサの基礎として必ず出てくる特性の1つです。
コンデンサには静電容量Cだけではなく、抵抗成分であるESR(等価直列抵抗)、インダクタンス成分のESL(等価直列インダクタンス)、静電容量と並列に存在するEPR(等価並列抵抗)が存在します。EPRは電極間の絶縁抵抗IR、もしくは電極間に漏れ電流があることと同じ意味です。IRが使われることが一般的かもしれません。

CとESLで直列共振回路を形成し、コンデンサのインピーダンスは図のように基本的にはV字型の周波数特性を示します。共振周波数までは容量性の特性を示しインピーダンスは低下します。共振周波数でのインピーダンスはESRに依存します。共振周波数を過ぎるとインピーダンス特性は誘導性に変わり、周波数が高くなるにつれてインピーダンスは高くなります。誘導性のインピーダンス特性はESLに依存します。
共振周波数は次の式で算出することができます。
この式は、静電容量が小さくESLが小さいコンデンサほど、共振周波数が高いことを表しています。これをノイズの除去に当てはめると、静電容量が小さくESLが小さいコンデンサほど、より高い周波数でインピーダンスが低いので、高周波ノイズの除去に優れることになります。
説明の順が前後してしまいましたが、コンデンサを使うノイズ対策は、コンデンサの「交流は通過し、周波数が高いほど通過しやすい」という基本特性を利用したもので、不要なノイズ(交流成分)を信号や電源ラインから、例えばGNDにバイパスするものです。
以下の図は、静電容量が違うコンデンサのインピーダンスの周波数特性です。容量性領域では静電容量が大きい方がインピーダンスが低くなっています。また、静電容量が小さいほど共振周波数が高く、誘導性領域においてはインピーダンスは低くなっています。

映像が壊れてます1MHz付近のインピーダンスが低くなっているのが多いです。そして、共振点が影響してきますので





コンデンサのインピーダンスの周波数特性について、ここまでの説明をまとめます。
・静電容量とESLが小さいと共振周波数が高くなり、高周波領域でのインピーダンスが低い。
・静電容量が大きいほど容量性領域のインピーダンスは低い。
・ESRが小さいほど共振周波数におけるインピーダンスが低い。
・ESLが小さいほど誘導性領域におけるインピーダンスが低い。
単純な話をすれば、インピーダンスの低いコンデンサはノイズ除去に優れることになりますが、コンデンサによってインピーダンスの周波数特性は異なるので、この特性は重要なチェックポイントになります。ノイズ対策としてコンデンサを選定する際は、容量ではなくインピーダンスの周波数特性で選定すると考えてください。
ノイズ対策としてコンデンサを選ぶ際には、容量としてではなくLCの直列共振回路をつなげていることを意識し、周波数特性を見る必要があります。


コメント

このブログの人気の投稿

Ampex680

Coffee shopの紹介

日光市の駅前通りに誕生したCoffeeの美味しいお店の風景 駐車場も広い、昔ながらのこだわりのお店です。お出かけのさいは是非よってみてください。 良い音楽もサービスのうちです。 お勧めです!

アナログの音は、本当に良いのか?

CDよりレコードの方がいい音? 性能のよいレコードプレーヤーでは、CDでカットされている20kHz以上の従来は聞こえないとされていた超高域波も再生できます。CDとレコードを聴いている時の脳波を比較した研究によれば、レコードを聴いているほうが、精神の安定に関係しているとみられるアルファー波が多く認められたとのことです。どうやらこの人間の耳には聞こえないとされていた超高域波がレコードの音を魅力的にしている秘密のようです。と、多くの記事は書いてますが、私は異論を持っています。 再生時に、50Hzから6DBカーブで減衰します。これは50HZから位相が45度進み位相になります。少なくとも500Hzと50Hzの時間は、近づくことになります。(ここで、音の端が、縮まることになります。)では中域では、2120HZからまた6DBで下降しますここでは、低域と違い、遅れいそうになります。また、20000Hzでも高域フイルターの働きのような働きにより、遅れ位相になります。ですから、位相では、帯域幅の下限では進み上限では、遅れます。この状態は、私たちが、生演奏会場で、聞く位相環境に、より近いということになります、これが、音の持つ情報の中で、安心、安全、優しさ、などの情報を、瞬時に、聴覚が脳に判断を仰いだ結果、良い音ですねと判断したりできるということです。「和坊、の戯言」です。 もし、前記の様な理由で、超広域波形も聞こえているというならば、なぜ?8000HZがすでに認識できない人でも、良いとかよくない音とかが判断できるのでしょう。なぜ!4CHオーデオは、廃れたのでしょう?60歳を過ぎた、人達でさえ、音がいいとかよくないとかの判断はできています。人間は、2音の時間差の分析には、特に優れている様です、また、マスキング現象にも、優れた能力を発揮してます。このことから、100Hzから6000HZ間の音の持つ高調波成分をも含んだ音で、良い悪いを判断していると私は考えております。この高調波成分も、奇数次高調波と偶数次高調波の占める比率が、心地よい心地が良くないを判断材料としていると私は、認識してます。 いつの頃からか?音響工学なる学問が誤った方向に、向かっている様にも感じてますが、最近では、FFTなる学問が出てきて、大きな期待をするところですが、私は2次高調波と3次高調波と基本波の強さの比率をコントロル...